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Abstract

UCSD and MIT will lead a group of collaborators demonstrating real-time FPGA-accelerated machine
learning inference. Machine learning is used in many facets of LHC data processing including the recon-
struction of energy deposited by particles in the detector. The training of a neural network for this purpose
with real LHC data will be demonstrated. The model deployment and acceleration on a Xilinx Alveo card
using a custom compiler called hls4ml will also be shown. An equivalent setup utilizing an NVIDIA
GPU will also be presented allowing for direct comparison. This demonstration will serve to illustrate a
first prototype of a new approach to the real-time triggering and event selection with LHC data aimed
at meeting the challenges of the second phase of the LHC program, the High Luminosity LHC, which is
planned to run from 2026-2037, following the development of further prototypes following this approach
during the upcoming LHC data taking runs in 2021-2023.

The Large Hadron Collider (LHC) at the European Center for Nuclear Research (CERN) is the definitive
instrument to perform high energy physics measurements. It represents both an engineering marvel and,
with the discovery of the Higgs boson, an unrivaled scientific instrument [1, 2]. Over the past six years,
the LHC has continued to reach new heights in our understanding of particle physics. At the time of the
Higgs boson discovery, little was known about the properties of this new particle. With more data we have
continued to improve our understanding. In fact, it was only recently that we were able to establish the
Higgs boson’s interaction with fermions [3, 4]. The LHC will continue to run for the next 15 years and
will bring a wealth of particle physics data that will cover many areas including the Higgs boson and dark
matter [5, 6, 7, 8, 9, 10, 11]. However, there is concern amongst the research community that continual
running will yield diminishing returns. There are no energy increases expected for the LHC’s future, and
the scheduled upgrades of the LHC detectors aim to maintain, but not improve performance.

To enhance the sensitivity of the acquired data to new physics, we aim to improve the data acquisition
chain. At a data rate of over 50 terabytes per second, the LHC has the largest data rate in the world.
Processing of this data is done in a set of tiers. With each successive tier, data is filtered, selecting only a
fraction of the initial collision rate, so that more information can be used to process the event and determine
if the event is sufficiently interesting to save to disk. In each tier, we know that many high quality events
that could be used to enhance physics measurements are being thrown out. Here, we aim to recover these
events by targeting the second tier, known as the high level trigger (HLT) to investigate the level of speed up
of reconstruction by assessing the reconstruction improvement of heterogeneous computing. This system
currently consists of a CPU based system consisting of order 10,000 cores located on site at the LHC. As
a proof of concept, P. Harris, J. Duarte, and collaborators have shown a speed-up of ×200 in latency for
inference of ResNet-50 with a Microsoft Brainwave FPGA service over a CPU [12].
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We propose to translate algorithms involved in reconstruction at the HLT to ML-based algorithms and
then to port these algorithms to FPGAs, GPUs. ML algorithms have long been a mainstay in high energy
physics. However, new algorithms are not adopted during the reconstruction chain due to the computing
limitations and the relative difficulty of writing specialized time limited algorithms. Due to recent devel-
opments, the porting of NN based algorithms to GPU and FPGAs has become relatively simple leading
to significant speeds due to the large parallelization of these algorithms. The quick translations allow for
testing and deployment in heterogeneous (GPU/FPGA/ASIC) systems on short timescales, which in turn
could lead to a more significant proposal for alternative computing model at the LHC.

To illustrate how effective an ML accelerator is for low latency processes, we have identified an al-
gorithm that is projected to be one of the leading limitations in the reconstruction of the high-level trig-
ger (the second stage of filtering): the reconstruction of signals in the hadron calorimeter of the Compact
Muon Solenoid (CMS) detector [13]. We first rewrote the existing algorithm, which is non-ML based, us-
ing a multilayer perceptron regression neural network. Then we ported this algorithm to an FPGA using
hls4ml [14], a translation tool to convert machine learning models in common frameworks into firmware
using High-Level Synthesis, developed by P. Harris (MIT), J. Duarte (UCSD), and collaborators at Fermi-
lab, CERN, and UIC. With the current algorithm, we find a throughput of roughly 3 ms for approximately
16, 000 inferences (corresponding to 1 full LHC event) using a GPU, and 2 ms using an FPGA. Additionally,
we have executed this algorithm on a GPU using the existing tools within TensorFlow. When going from
another machine in the same cluster, the overall latency increases by 10 ms without a change in throughput.
On a Xilinx Alveo U250 FPGA, we are still characterizing the ultimate achievable throughput and latency.
However, we have observed in previous tests that similar latency and throughput rates can be obtained.

The GPU-based algorithm is now being run as a service (aaS) at 3 locations across the US: at UCSD with
a 7 GPU machine, at MIT with a 1 GPU machine, and at Fermilab with a 3 GPU machine. Additionally, local
service is being run at SC19. Two FPGA based services are also operational utilizing Xilinx Alveo cards,
one at Fermilab and one at UCSD. Both the GPU and FPGA algorithms are served by the same machine.

In this demonstration, we will run an emulation of real LHC data taking by sending roughly 16, 000
inference requests at a rate of approximately 1 kHz. The maximum permissible average latency for the
high-level trigger is 200 ms for the full system. As such, we target latency of less than about 10 ms for each
set of 16, 000 inferences.
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